Globalization strategies for Newton-Krylov methods for stabilized FEM discretization of Navier-Stokes equations
نویسندگان
چکیده
In this work we study the numerical solution of nonlinear systems arising from stabilized FEM discretizations of Navier–Stokes equations. This is a very challenging problem and often inexact Newton solvers present severe difficulties to converge. Then, they must be wrapped into a globalization strategy. We consider the classical backtracking procedure, a subspace trust-region strategy and an hybrid approach. This latter strategy is proposed with the aim of improve the robustness of backtracking and it is obtained combining the backtracking procedure and the elliptical subspace trust-region strategy. Under standard assumptions, we prove global and fast convergence of the inexact Newton methods embedded in this new strategy as well as in the subspace trust-region procedure. Computational results on classical CFD benchmarks are performed. Comparisons among the classical backtracking strategy, the elliptical subspace trust-region approach and the hybrid procedure are presented. Our numerical experiments show the effectiveness of the proposed hybrid technique. 2007 Elsevier Inc. All rights reserved. AMS subject classifications: 65N30; 65N50; 65N55
منابع مشابه
Inexact Newton-Type Methods for Non-Linear Problems Arising from the SUPG/PSPG Solution of Steady Incompressible Navier-Stokes Equations
The finite element discretization of the incompressible steady-state Navier-Stokes equations yields a non-linear problem, due to the convective terms in the momentum equations. Several methods may be used to solve this non-linear problem. In this work we study Inexact Newton-type methods, associated with the SUPG/PSPG stabilized finite element formulation. The resulting systems of equations are...
متن کاملGlobalization Techniques for Newton-Krylov Methods and Applications to the Fully Coupled Solution of the Navier-Stokes Equations
A Newton–Krylov method is an implementation of Newton’s method in which a Krylov subspace method is used to solve approximately the linear subproblems that determine Newton steps. To enhance robustness when good initial approximate solutions are not available, these methods are usually globalized, i.e., augmented with auxiliary procedures (globalizations) that improve the likelihood of converge...
متن کاملParallel Edge-Based Inexact Newton Solution of Steady Incompressible 3D Navier-Stokes Equations
The parallel edge-based solution of 3D incompressible Navier-Stokes equations is presented. The governing partial differential equations are discretized using the SUPG/PSPG stabilized finite element method [5] on unstructured grids. The resulting fully coupled nonlinear system of equations is solved by the inexact Newton-Krylov method [1]. Matrix-vector products within GMRES are computed edge-b...
متن کاملA Scalable Numerical Method for Simulating Flows Around High-Speed Train Under Crosswind Conditions
This paper presents a parallel Newton-Krylov-Schwarz method for the numerical simulation of unsteady flows at high Reynolds number around a high-speed train under crosswind. With a realistic train geometry, a realistic Reynolds number, and a realistic wind speed, this is a very challenging computational problem. Because of the limited parallel scalability, commercial CFD software is not suitabl...
متن کاملFully implicit Lagrange-Newton-Krylov-Schwarz algorithms for boundary control of unsteady incompressible flows
We develop a parallel fully implicit domain decomposition algorithm for solving optimization problems constrained by time dependent nonlinear partial differential equations. In particular, we study the boundary control of unsteady incompressible Navier-Stokes equations. After an implicit discretization in time, a fully coupled sparse nonlinear optimization problem needs to be solved at each tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 226 شماره
صفحات -
تاریخ انتشار 2007